Loading [MathJax]/jax/output/CommonHTML/jax.js

বিভিন্ন ত্রিকোণমিতিক ফাংশনের সংমিশ্রণ

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ২য় পত্র | - | NCTB BOOK
150
150

ত্রিকোণমিতিক ফাংশনের সংমিশ্রণ (Combination of Trigonometric Functions) বলতে, একাধিক ত্রিকোণমিতিক ফাংশন (যেমন sin, cos, tan, cot, sec, csc) এর গাণিতিক সম্পর্ক বা অপারেশন বুঝায়। এর মধ্যে সাধারণত বিভিন্ন ত্রিকোণমিতিক ফাংশনের যোগ, বিয়োগ, গুণ, ভাগ, বা অন্যান্য গাণিতিক অপারেশন অন্তর্ভুক্ত থাকে।

এখানে কিছু সাধারণ ত্রিকোণমিতিক ফাংশনের সংমিশ্রণ সম্পর্কে আলোচনা করা হলো:

১. যোগফল এবং বিয়োগফল (Sum and Difference Formulas):

ত্রিকোণমিতিক ফাংশনের যোগ এবং বিয়োগ সংক্রান্ত কিছু গুরুত্বপূর্ণ সূত্র:

সাইন যোগফল সূত্র:

sin(A+B)=sinAcosB+cosAsinB
sin(AB)=sinAcosBcosAsinB

কসমাইন যোগফল সূত্র:

cos(A+B)=cosAcosBsinAsinB
cos(AB)=cosAcosB+sinAsinB

ট্যানজেন্ট যোগফল সূত্র:

tan(A+B)=tanA+tanB1tanAtanB
tan(AB)=tanAtanB1+tanAtanB


২. গুণফল সূত্র (Product Formulas):

গুণফল সূত্রগুলো ত্রিকোণমিতিক ফাংশনের গুণফল থেকে একক ফাংশন বের করার জন্য ব্যবহৃত হয়।

সাইন গুণফল সূত্র:

sinAsinB=12[cos(AB)cos(A+B)]

কসমাইন গুণফল সূত্র:

cosAcosB=12[cos(AB)+cos(A+B)]

সাইন-কসমাইন গুণফল সূত্র:

sinAcosB=12[sin(A+B)+sin(AB)]


৩. ত্রিকোণমিতিক ফাংশনের রূপান্তর (Trigonometric Transformations):

একটি ত্রিকোণমিতিক ফাংশনকে অন্য ফাংশনে রূপান্তর করার জন্যও কিছু সাধারণ সূত্র রয়েছে।

সাইন এবং কসমাইন রূপান্তর:

sin2A+cos2A=1
এটি পিথাগোরাসের মৌলিক সমীকরণ যা সাইন এবং কসমাইন ফাংশনের মধ্যে সম্পর্ক প্রদর্শন করে।

ট্যানজেন্ট রূপান্তর:

tanA=sinAcosA
এটি ট্যানজেন্ট ফাংশনকে সাইন এবং কসমাইন ফাংশনের রেশিও হিসেবে প্রকাশ করে।

কটানজেন্ট রূপান্তর:

cotA=1tanA=cosAsinA
এটি কটানজেন্ট ফাংশনকে ট্যানজেন্ট ফাংশনের বিপরীত বা কসমাইন এবং সাইন ফাংশনের রেশিও হিসেবে প্রকাশ করে।

সেকান্ট এবং কোসেকান্ট রূপান্তর:

secA=1cosA
cscA=1sinA
এগুলি সেকান্ট এবং কোসেকান্ট ফাংশনকে কসমাইন এবং সাইন ফাংশনের বিপরীত হিসেবে প্রকাশ করে।


৪. গাণিতিক সমীকরণে সংমিশ্রণ (Combination in Equations):

কিছু গাণিতিক সমস্যায় ত্রিকোণমিতিক ফাংশনের সংমিশ্রণ বা মিশ্র ব্যবহার হয়ে থাকে। উদাহরণস্বরূপ:

  1. sin2A+cos2A=1 — এটি একটি পিথাগোরাসীয় সমীকরণ যা সাইন এবং কসমাইন ফাংশনের সম্পর্ক বোঝায়।
  2. tan(A+B)=tanA+tanB1tanAtanB — এখানে দুটি ট্যানজেন্ট ফাংশনের যোগফল নির্ধারণ করা হয়েছে।
  3. sec2A=1+tan2A — এটি একটি পরিচিত সূত্র যা সেকান্ট এবং ট্যানজেন্টের মধ্যে সম্পর্ক দেখায়।

এইভাবে, ত্রিকোণমিতিক ফাংশনের সংমিশ্রণ আমাদের বিভিন্ন ত্রিকোণমিতিক সমস্যা সমাধান করতে সাহায্য করে।

টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion